北师大版四年上册数学知识点
2022-07-19430
重视数学公式。有很多人数学学不好就是因为对概念和公式不够重视,表现为对数学概念的理解只是停留在表明,不去理解消化,对数学概念的特殊情况不明白。下面是张承辉整理的北师大版四年上册数学知识点,仅供参考希望能够帮助到大家。
北师大版四年上册数学知识点
1.大数的认识
亿以内的数的认识:
十万:10个一万;
一百万:10个十万;
一千万:10个一百万;
一亿:10个一千万;
2.数级
数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。
3.数级分类
(1)四位分级法
即以四位数为一个数级的分级方法。我国读数的习惯,就是按这种方法读的。
如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……
这些级分别叫做个级,万级,亿级……
(2)三位分级法
即以三位数为一个数级的分级方法。这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。
4.数位
数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。这就说明计数单位和数位的概念是不同的。
5.数的产生
阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。
阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。
6.自然数
用以计量事物的件数或表示事物次序的数。
即用数码0,1,2,3,4,……所表示的数。表示物体个数的数叫自然数,自然数由0开始(包括0),一个接一个,组成一个无穷的集体。
7.计算工具
算盘、计算器、计算机
8.射线
在几何学中,直线上的一点和它一旁的部分所组成的图形称为射线。如下图所示:
射线特点
(1)射线只有一个端点,它从一个端点向另一边无限延长。
(2)射线不可测量。
9.直线
直线是点在空间内沿相同或相反方向运动的轨迹。
10.线段
线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。其中AB表示直线上的任意两点。
11.线段特点
(1)有限长度,可以测量
(2)两个端点
12.线段性质
(1)两点之间线段最短。
(2)连接两点间线段的长度叫做这两点间的距离。
(3)直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。
直线没有距离。射线也没有距离。因为,直线没有端点,射线只有一个端点,可以无限延长。
13.角
(1)角的静态定义
具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
(2)角的动态定义
一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边
14.角的符号
角的符号:∠
15.角的种类
角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
(1)锐角:大于0°,小于90°的角叫做锐角。
(2)直角:等于90°的角叫做直角。
(3)钝角:大于90°而小于180°的角叫做钝角。
16.乘法
乘法是指一个数或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以说成5个4连加。
17.乘法算式中各数的名称
“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
10(因数)×(乘号)200(因数)=(等于号)2000(积)
18.平行
在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。如图直线AB平行于直线CD,记作AB∥CD。平行线永不相交。
19.互相垂直
垂直两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
20.平行四边形
在同一平面内有两组对边分别平行的四边形叫做平行四边形。
21.梯形
梯形是指一组对边平行而另一组对边不平行的四边形。平行的两边叫做梯形的底边,其中长边叫下底,短边叫上底;也可以单纯的认为上面的一条叫上底,下面一条叫下底。不平行的两边叫腰;夹在两底之间的垂线段叫梯形的高。
22.除法
除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。
余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。
学好数学的八种思维
转化思维
转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、清晰。
逻辑思维
逻辑是一切思考的基础。逻辑思维是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻辑思维,在解决逻辑推理问题时使用广泛。
逆向思维
逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。
对应思维
对应思维是在数量关系之间(包括量差、量倍、量率)建立一种直接联系的思维方法。比较常见的是一般对应(如两个量或多个量的和差倍之间的对应关系)和量率对应。
创新思维
创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法、视角去思考问题,得出与众不同的解决方案。可分为差异性、探索式、优化式及否定性四种。
系统思维
系统思维也叫整体思维,系统思维法是指在解题时对具体题目所涉及的知识点有一个系统的认识,即拿到题目先分析、判断属于什么知识点,然后回忆这类问题分为哪几种类型,以及对应的解决方法。
类比思维
类比思维是指根据事物之间某些相似性质,将陌生的、不熟悉的问题与熟悉问题或其他事物进行比较,发现知识的共性,找到其本质,从而解决问题的思维方法。
形象思维
形象思维主要是指人们在认识世界的过程中,对事物表象进行取舍时形成的,是指用直观形象的表象,解决问题的思维方法。想象是形象思维的高级形式,也是其中一种基本方法。
如何才能成为数学学霸
想要提升成绩成为数学学霸,天赋是非常重要的,当然除了天赋外还要看你是否肯用心,而且学习方法也是同等重要的。
提升数学成绩成为学霸的第一步,就是要背,记住数学里面的公式和推算方法,掌握住数学公式和推算方法有助于你答题,无论自己碰到什么样的题型,最基本的公式是必须要掌握的。因为数学答题时就算你不会,但是只要把公式写出来还是会得分的,能够更有效地提升你的成绩。
多练习,多练习不是说搞那些所谓的题海战术,真正要练的是教材,数学教材才是真正的基础题,可以起到举一反三的作用。而且在做题的时候要的是效率,而不是量,认真分析做过的题型,你会发现他们的题型会有相似之处,能够使你更好的知道数学中的奥秘。
北师大版四年上册数学知识点